700х100

Проблема чистой воды

Печать E-mail

Известно, что количество воды в природе практически неизменно. Проблемой является то, что на планете постоянно сокращаются запасы чистой питьевой воды. И это происходит при возрастающем объеме водопотребления.

Для использования в промышленности, сельском хозяйстве и быту пригодны в основном пресные воды.

Основные источники пресной (питьевой) воды — реки и пресные озера — распространены на континентах крайне неравномерно. В Европе и Азии, где проживает 70% населения, сосредоточено только 39% мировых запасов речных вод. В Европе, где проживает почти 20% населения планеты, запасы пресной воды составляют лишь 7% всех мировых запасов воды.

На планете есть территории, где катастрофически не хватает чистой питьевой воды. Так, в одном из африканских племен женщины целыми днями разгребают влажный песок, черпая ложками бурую жидкость. За день набирается всего один-два литра (об этом был снят фильм).

На островах южных морей для утоления жажды можно рассчитывать лишь на дождевую воду и кокосовое молоко. Нередко детям не разрешают играть в подвижные игры, потому что от этого ребенок потеет и ему больше хочется пить.

В течение длительного исторического периода в регионах с природными запасами чистой пресной воды человек в полной мере удовлетворял свои потребности в пресной воде, не ощущая в ней недостатка. Однако в связи с интенсивным ростом населения и его производственной деятельностью потребность в воде неуклонно возрастала. В настоящее время она достигла таких масштабов, что во многих местах планеты, и особенно в развитых промышленных районах, возникла острая проблема нехватки пресной воды.

Недостаток пресной воды отмечается уже сейчас во многих странах мира, его испытывает 1/3 населения планеты. Так, Гонконг, население которого около 4 млн. человек, получает воду по специальному трубопроводу из Китая. Дополнительно ее доставляют танкерами. Хронический «водный голод» испытывает Токио. Привозной водой частично обеспечивается государство Алжир. В Саудовскую Аравию чистую воду возили самолетами из Новой Зеландии. В магазинах Голландии и Японии продают чистую воду, привезенную из Норвегии.

Наряду с проблемой дефицита пресной воды во многих регионах мира остро стоит проблема чистой пресной воды. Есть сведения о том, что 1,5 млрд. людей не имеют чистой воды. Согласно же данным ВОЗ, почти 3 млрд. жителей планеты пользуются некачественной питьевой водой. По этой причине около 25% населения мира ежегодно подвергаются риску заболеть, приблизительно каждый десятый житель планеты болеет, около 4 млн. детей и 18 млн. взрослых умирают. Около 80% всех заболеваний в развивающихся странах связано с нехваткой чистой воды. Кроме того, вода является бесценным сырьем, которое невозможно заменить другим.

Учитывая все выше изложенные причины, проблема водоснабжения стала одной из важнейших в жизни и развитии человеческого общества.

Причины недостатка пресной воды в мире следующие: интенсивное увеличение потребностей в воде в связи с ростом численности населения планеты и развитием отраслей хозяйственной деятельности, требующих огромных затрат водных ресурсов; потери пресной воды вследствие сокращения водоносности рек и других причин; загрязнение водоемов сточными водами.

Потери пресной воды вследствие сокращения водоносности рек обусловлены в основном вырубкой лесов, распашкой лугов, осушением пойменных болот и т.д. Это приводит, во-первых, к усилению поверхностного стока и увеличению объема воды, стекающей в моря, и, во-вторых, к сокращению уровня грунтовых вод, питающих реки и поддерживающих их водоносность. Потери пресной воды во многих странах мира сокращают запасы подземных вод.

Для обозначения указанного явления существует понятие — истощение вод.

Истощение вод — уменьшение минимально допустимого стока поверхностных вод или сокращение запасов подземных вод. Минимально допустимым стоком называются сток, при котором обеспечиваются экологическое благополучие водного объекта и условия водопользования.
Кроме того, большие потери пресной воды происходят в результате:
фильтрации воды через стенки каналов; 
нарушения целостности (порывов) магистральных водоводов, подающих воду в населенные пункты от источников водоснабжения, и труб водопроводной сети, по которым вода разводится по территории населенных пунктов; 
нерациональной утечки воды в жилых и общественных зданиях в результате неисправных водопроводных кранов и водосливных канализационных приборов.

В мире следует ожидать дальнейшего увеличения расходов пресной воды на различные нужды человеческого общества.

Дефицит чистой пресной воды также обусловлен загрязнением природных вод.

Загрязнение вод — внесение в воду (водные объекты) или образование (синтез, размножение и т.д.) в ней физических, химических или биологических агентов, неблагоприятно воздействующих на среду жизни или наносящих урон материальным ценностям. Загрязнение водных объектов происходит обычно в результате сброса в них сточных вод.

Сточные воды — это воды, бывшие в производственно-бытовом или сельскохозяйственном употреблении, а также прошедшие через какую-то загрязненную территорию, в том числе территорию населенного пункта (промышленные, сельскохозяйственные, коммунально-бытовые и ливневые стоки). Это воды, отводимые после использования в бытовой и производственной деятельности человека.

Основными вредными веществами, поступающими в водные объекты (поверхностные и подземные источники воды) со сточными водами, являются нефть и нефтепродукты, фенол, моющие специфические поверхностно-активные вещества (СПАВ), аммиак, пестициды, тяжелые металлы, сложные химические соединения и другие. С хозяйственно-бытовыми сточными водами могут попасть в водоисточники возбудители инфекционных заболеваний.

В результате поверхностные и подземные воды становятся непригодными для использования в целях обеспечения питьевого водоснабжения, бытовых и производственных целей.

Поданным Московского НИИ гигиены им. Ф.Ф. Эрисмана, в России наиболее часто выше регламентированных величин в питьевой воде обнаруживаются железо, мутность, суммарное органическое загрязнение по величине перманганатной окисляемости, фенолы, марганец, СПАВ и нефтепродукты, остаточный алюминий, формальдегид, капролактам, циклогексанол. В некоторых пробах питьевой воды регистрируется повышенное содержание мышьяка и свинца. Наличие ртути, кадмия, молибдена, никеля и хрома в воде некоторых водопроводов представляет опасность для здоровья населения. Появление этих веществ в воде можно объяснить техногенными причинами.

В России по максимальной интенсивности и площади загрязнения подземных вод вредными химическими веществами наиболее напряженная обстановка сложилась в районах крупных промышленных предприятий — в городах Череповец (фенолы, хлорбензол, бутанол, толуол), Липецк (цианиды, роданиды), Тула (роданиды), Воронеж (СПАВ, кадмий), Тольятти (фенолы, алюминий), Волгоград (фенолы, молибден), Ставрополь (кадмий, никель), Челябинск и Новороссийск (фенолы, свинец, железо), Новокузнецк (фенолы, фториды) и т.д..

В Украине со сточными водами в водные объекты могут поступать нефтепродукты, фенол, стирол, хлорбензол, дихлорэтан, цианиды, ацетон, кадмий, соединения свинца, меди, цинка, ртути и другие вещества. При этом сохраняется опасность их проникновения в питьевую воду.

Концентрации различных химических элементов в питьевой воде зависят от природных и техногенных (антропогенных) факторов. Природные причины определяются уровнем естественного содержания элементов в открытых водоемах, подземных водах, почве и горных породах, а техногенные — поступлением в окружающую среду химических элементов в результате хозяйственной деятельности человека.

Согласно опубликованным данным, к химическим элементам, содержание которых в питьевой воде в значительной мере определяется специфическими особенностями биогеохимических провинций, относятся фтор, железо, барий, титан, цирконий, ванадий, молибден, литий, стронций и кобальт.

Биогеохимическая провинция — отдельный участок поверхности Земли, отличающийся от других подобных участков по содержанию (избыток или недостаток) и составу химических элементов и веществ, находящихся в почвах, водах, растениях и животных.

Содержание в питьевой воде тяжелых металлов (свинец, медь, никель, цинк), а также марганца и хрома зависит как от геогидрохимических особенностей территории, так и от специфики техногенного воздействия на окружающую среду. Специалистами установлено, что если концентрации различных металлов в питьевой водопроводной воде превышают фоновый уровень, это является подтверждением их техногенного, а не природного, происхождения.

Тяжелые металлы в источниках питьевого водоснабжения и, соответственно, в питьевой воде на различных территориях распределены крайне неравномерно. Так, в населенных пунктах Донецкой области обнаружены в питьевой воде концентрации свинца: максимальная 3,6 ГТДК (Шахтерский район) и минимальная 0,4 ПДК (г. Мариуполь), никеля — максимальная 2,7 ПДК (Старобешевский район) и не выявлено ни в одной пробе воды в шести сельских районах, хрома — 3,4 ПДК (Первомайский район) и не обнаружено ни в одной пробе воды в 4 районах. Максимальная концентрация марганца достигла 8,6 ПДК (Первомайский район), в то время как в питьевой воде большинства городов области этот металл встречается в невысоких концентрациях и обычно не превышает гигиенический норматив.

К вредным веществам, загрязняющим источники водоснабжения и питьевую воду, относят пестициды. Это химические вещества, используемые для защиты растений, сельскохозяйственных продуктов, древесины, изделий из шерсти, хлопка, кожи, для уничтожения эктопаразитов животных и борьбы с переносчиками опасных заболеваний.

По данным американских ученых, использование пестицидов в сельском хозяйстве может привести к местному и региональному загрязнению источников питьевой воды. Содержание пестицидов в воде открытых водоемов и подземных вод изменяется в значительной степени в зависимости от сезонов года и местных геологических особенностей. Самые высокие концентрации этих веществ отмечаются в водах весной и в начале лета после ливней. Пестициды обнаружены почти в 50% исследованных проб грунтовых вод, отобранных на территории США.

Всего по данным Американского управления по охране окружающей среды (Агентства по Охране Окружающей Среды — ЕРА) и других организаций США, более 160 активных компонентов пестицидов известны как канцерогены или подозрительные по канцерогенному действию.

Представляют значительную опасность для населения случаи экстремально высокого загрязнения питьевой воды вредными веществами техногенного происхождения. Обычно это происходит при различных авариях.

В результате аварии на Чернобыльской АЭС, произошедшей в ночь с 25 на 26 апреля 1986 г., в Украине в опасной степени поражена радиацией территория 2712 км2, которая полностью исключена из народнохозяйственного использования. Период распада некоторых изотопов достигает 130 лет. Побочным результатом чернобыльской катастрофы стало загрязнение водных источников и, как следствие, питьевой воды радиоактивными изотопами. Это привело К дефициту чистой природной йоды R зоне катастрофы.

Загрязнение вредными веществами питьевой воды централизованного водоснабжения может происходить при нарушении законодательства — в случае соединения ответственными лицами водопроводных сетей питьевого водоснабжения с сетями, подающими не питьевую воду, то есть технического или промышленного водоснабжения. Например 20 июня 1987 г. в г. Коммунарске (в настоящее время г. Алчевск Луганской области) в поселке Горького произошло значительное загрязнение питьевой водопроводной воды нефтепродуктами. Рано утром из открытых водопроводных кранов жителей полилась жидкость, представляющая смесь воды и маслянистых веществ. В результате расследования был установлен факт соединения сетей питьевого водоснабжения поселка с системой оборотного водоснабжения прокатного участка цеха товаров народного потребления металлургического комбината. Работники этого цеха с целью подпитки технологической системы питьевой водой прямо («без разрыва струи») подключили водовод питьевой воды к водопроводному узлу оборотного цикла системы охлаждения нагревательных печей и валков прокатных станов. В то же время для охлаждения этих агрегатов использовалась вода из отстойника, в котором скопилось большое количество нефтепродуктов. Была установлена идентичность нефтепродуктов, отобранных в отстойнике цеха и содержащихся в воде системы питьевого водоснабжения. По факту данного нарушения городской СЭС виновные были оштрафованы и соответствующий материал направлен в прокуратуру города. Нормальное водоснабжение поселка было восстановлено.

Ученые многих стран заняты проблемами очистки загрязненных вод, опреснения морской соленой воды и поиском новых источников живительной влаги. Имеются проекты буксировки антарктических айсбергов к берегам Калифорнии, Саудовской Аравии и других стран.

Американские специалисты выполнили расчеты, по которым транспортировку айсберга весом около 10 миллиардов тонн могут осуществить шесть буксирных судов. Такая гора льда может поставлять пресную воду крупному региону в течение года.

 

Чем опасно хлорирование водопроводной воды?

Печать E-mail

Хлорирование воды - наиболее распространённый способ обеззараживания питьевой воды с применением газообразного хлора или хлорсодержащих соединений, вступающих в реакцию с водой или растворенными в ней солями. В результате взаимодействия хлора с протеинами и аминосоединениями, содержащимися в оболочке бактерий и их внутриклеточном веществе, происходят окислительные процессы, химические изменения внутриклеточного вещества, распад структуры клеток и гибель бактерий и микроорганизмов.

Дезинфекция (обеззараживание) питьевой воды осуществляется за счёт дозирования хлора, двуокиси хлора, хлорамина и хлорной извести (не путать с термином очистка питьевой воды от извести). Необходимая доза дозируемого вещества устанавливается пробным хлорированием воды: она определяется хлорпоглощаемостью воды (количество хлора, необходимое для связывания содержащихся в воде органических соединений).

С целью уничтожения микробов хлор вводят с избытком из того расчёта, чтобы через 30 мин после хлорирования воды содержание остаточного хлора было не менее 0,3 мг/л. В некоторых случаях проводится двойное хлорирование воды – до фильтрации и после чистки воды. Также при эпидемиологических катастрофах проводится суперхлорирование с последующим дехлорированием воды.

Для хлорирования воды на водопроводных очистных станциях используется жидкий хлор и хлорная известь (для станций малой производительности).
Хлорирование воды жидким хлором. При введении хлора в воду образуются хлорноватистая и соляная кислоты

С12 + Н2О = НОС1 + НС1.

Далее происходит диссоциация образовавшейся хлорноватистой кислоты

НОС1 ч* Н+ + ОС1-.

Получающиеся в результате диссоциации хлорноватистой кислоты гипохлоритные ионы ОС1~ обладают наряду с недиссоциированными молекулами хлорноватистой кислоты бактерицидным свойством.

Сумму С12+НОС1+ОС1- называют свободным активным хлором.

При наличии в воде аммонийных соединений или при специальном введении в воду аммиака (аммонизация воды — см. § 114) образуются монохлорамины NH2CI и дихлорамины NHCb, также оказывающие бактерицидное действие, несколько меньшее, чем свободный хлор, но более продолжительное. Хлор в виде хлораминов в отличие от свободного называется с в я з а н н ы м    активным    хлором.

Количество активного хлора, необходимого для обеззараживания воды, должно определяться не по количеству болезнетворных бактерий, а по всему количеству органических веществ и микроорганизмов (а также и неорганических веществ, способных к окислению), которые могут находиться в хлорируемой воде.

Правильное назначение дозы хлора является исключительно важным. Недостаточная доза хлора может привести к тому, что он не окажет необходимого бактерицидного действия; излишняя доза хлора ухудшает вкусовые качества воды. Поэтому доза хлора должна быть установлена в зависимости от индивидуальных свойств очищаемой воды на основании опытов с этой водой.

Расчетная доза хлора при проектировании обеззараживающей установки должна быть принята исходя из необходимости очистки воды в период ее максимального загрязнения (например, в период паводков).

ХлорированиеПоказателем достаточности принятой дозы хлора служит наличие в воде так называемого остаточного хлора (остающегося в воде от введенной дозы после окисления находящихся в воде веществ). Согласно требованиям ГОСТ 2874—73, концентрация    остаточного хлора в воде перед поступлением   ее в сеть   должна   находиться   в   пределах 0,3— 0,5 мг/л.
Содержание в питьевой воде свободного остаточного хлора регламентируется СанПиН 2.1.4.1074-01 "Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества" (содержание в воде свободного остаточного хлора 0,3 – 0,5 мг/л) и СанПин 2.1.4.1116 – 02 «Питьевая вода. Гигиенические требования к качеству воды, расфасованной в емкости. Контроль качества» (содержание в воде свободного остаточного хлора не более 0,05 мг/л). Лимитирующий признак вредности вещества, по которому установлен норматив – органолептический (хотя это далеко не так…).

Хлор – это злейший враг нашей современности с тех пор, как он стал применяться в качестве дезинфектора питьевой воды с 1904 года. Предотвращая одни заболевания, он является причиной появления других, более страшных болезней: проблемы с сердцем, рак, а также преждевременная старость. По иронии даже хлор, широко применяемый в качестве дезинфектора воды, оказывается опасным канцерогеном. С одной стороны, хлорирование воды избавило человечество от риска инфекционных заболеваний и эпидемий. 
С другой стороны, учеными в 70-80 годы было обнаружено, что хлорированная вода способствует накапливанию в воде канцерогенных веществ. Среди населения, потребляющего хлорированную питьевую воду, были выявлены случаи рака пищевода, прямой кишки, молочной железы, гортани, заболевания печени. Потому что при взаимодействии хлора с органическими веществами, находящимися в воде, образуются химические вещества. Эти вещества – трихлометаны- являются канцерогенными, что и было доказано учеными опытным путем. Ведь, как известно, хлороформ даже у крыс вызывает рак.

Этот эффект от вредного воздействия хлора может быть вызван двумя способами: когда хлор проникает в организм через дыхательные пути, и когда хлор проникает через кожу. Ученые во всем мире исследуют эту проблему. Они связывают многие опасные заболевания с попаданием в человеческий организм хлора или вредных побочных продуктов хлорирования воды. К этим заболеваниям относят: рак мочевого пузыря, рак желудка, рак печени, рак прямой и ободочной кишки. Но страдают не только органы пищеварения.

В чем проблема?

Наиболее важной проблемой данного метода является высокая активность хлора, он вступает в химические реакции со всеми органическими и неорганическими веществами находящимися в воде. В воде из поверхностных источников (которые в основном являются источниками водозабора) находится огромное количество сложных органических веществ природного происхождения, а также в большинстве крупных промышленных городов в воду попадают с промышленными стоками красители, ПАВ, нефтепродукты, фенолы и пр.

При хлорировании воды, содержащей вышеприведенные вещества, образуются хлорсодержащие токсины, мутагенные и канцерогенные вещества и яды, в том числе диоксиды, а именно:


• Хлороформ, обладающий канцерогенной активностью

• Дихлорбромметан, хлоридбромметан, трибромметан - обладающие мутагенными свойствами

• 2,4,6-трихлорфенол, 2-хлорфенол, дихлорацетонитрил, хлоргиередин, полихлорированные бифенилы - являющиеся иммунотоксичными и канцерогенными веществами

• Тригалогенметаны - канцерогенные соединения хлора

Данные вещества оказывают замедленное убийственное воздействие на организм человека. Очистка питьевой воды от хлора не решает проблемы, так как многие из опасных соединений образующиеся в воде в процессе ее хлорирования попадают в организм человека через кожу, во время мытья, приема ванн или посещения бассейна. По некоторым данным, часовое принятие ванны содержащей в избыточном количестве хлорированную воду соответствует десяти литрам выпитой хлорированной воды.

Первые попытки связать онкологическую заболеваемость населения с качеством питьевой воды были предприняты еще в 1947 году. Но вплоть до 1974 года хлорирование воды никак не связывали с онкологией. Считалось, что хлорированная вода не оказывает на здоровье человека неблагоприятного действия.

К сожалению данные по связи потребления хлорированной питьевой воды поверхностных водоисточников с частотой злокачественных новообразований у населения стали накапливаться только с 70-х годов. Поэтому до сих пор на этот счет существуют разные точки зрения. По мнению некоторых исследователей, с употреблением загрязненной воды может быть связано от 30 до 50% случаев злокачественных опухолей. Другие приводят расчеты, в соответствии с которыми потребление речной воды (по сравнению с водой подземных источников) может привести к увеличению онкологической заболеваемости на 15%.

Чем опасен хлор, попадающий в организм человека

Побочный эффект от вредного воздействия хлора может быть вызван двумя способами: когда хлор проникает в организм через дыхательные пути, и когда хлор проникает через кожу. Ученые во всем мире исследуют эту проблему. Они связывают многие опасные заболевания с попаданием в человеческий организм хлора или вредных побочных продуктов хлорирования воды. К этим заболеваниям относят: рак мочевого пузыря, рак желудка, рак печени, рак прямой и ободочной кишки.

Но страдают не только органы пищеварения. Также хлор может стать причиной болезни сердца, атеросклероза, анемии, повышенного давления. Помимо этого хлор сушит кожу (вспомните ощущение стянутости кожи после бассейна), разрушает структуру волос (они начинают больше выпадать, становятся ломкими, тусклыми, безжизненными), раздражает слизистую оболочку глаз.

Эпидемиологи США провели исследование: они сравнили карту хлорирования воды с картой распределения заболеваний раком мочевого пузыря и органов пищеварения. Выявили прямую зависимость: чем больше содержание хлора в воде, тем чаще встречается заболевание.

--
Британские ученые из университета Бирмингема заявили о том, что потребление хлорированной воды во время беременности может привести к рождению детей с тяжелейшими врожденными дефектами – в частности, с пороками сердца и мозга.

Специалисты под руководством Юни Яаккола изучили данные о 400 тысячах младенцах, чтобы выяснить, как связаны одиннадцать наиболее распространенных врожденных дефектов с высоким, средним или низким содержанием химических веществ, появляющихся при хлорировании в питьевой воде.

Как известно, хлорирование – достаточно распространенный метод обеззараживания, который приводит к значительному сокращению передающихся с питьевой водой инфекций. Но одним из недостатков этого метода является образование побочных продуктов, большую часть которых составляют так называемые тригалометаны, в частности, хлороформ, дихлорбромметан, дибромхлорметан и бромоформ.

В результате исследования оказалось, что высокий уровень побочных продуктов хлорирования от 50 до 100% увеличивал риск появления трех врожденных пороков – дефекта межжелудочковой перегородки сердца (отверстие в перегородке между желудочками сердца, что приводит к смешиванию артериальной и венозной крови и хронической нехватке кислорода), так называемой волчьей пасти (расщелина в небе), а также к анэнцефалии (полное или частичное отсутствие костей свода черепа и мозга).

"Биологические механизмы, которые приводят к появлению врожденных пороков при высоком уровне побочных продуктов хлорирования, пока остаются неизвестными. Но наше исследование не только дает дополнительные свидетельства, что хлорирование может приводить к врожденным дефектам, но также показывает, что присутствие его побочных продуктов может быть связано с некоторыми конкретными пороками", – говорит Яаккола.

--
Вред хлора для здоровья человека нельзя недооценивать, отмечают врачи. Несмотря на то, что водоочистные станции используют относительно невысокие концентрации, даже они вредны для здоровья животных и человека. Вдыхание высоких концентраций хлора может быть фатальным для людей и вызывать различные болезни – от головных болей до нейротоксических реакций, возможно даже развитие раковых опухолей.

Более того, как отмечают специалисты, водные токсины попадают в организм не только через органы дыхания. Хлор лишает кожу ее естественной жировой оболочки, сушит, вызывает зуд и преждевременное старение. Даже волосы под действием хлорированной воды становятся сухими и ломкими.

Хлорирование воды – самый популярный способ ее дезинфекции, но не самый безопасный. Основные риски потребления воды из-под крана связаны с побочными продуктами, образуемыми хлором при соединении с другими веществами. Существуют данные, что это может способствовать возникновению раковых заболеваний. Более того, некачественная вода является причиной возникновения 80% заболеваний, а потребление воды хорошего качества способно продлить жизнь на 5-8 лет.

По материалам: www.bibliotekar.ru, www.ekomarket.ru, RBK.ru, РИА Новости

 

Физико-химические свойства Воды

Печать E-mail

   Вода – колыбель жизни.
   А что мы знаем о воде?


    Сколько тайн и загадок таит в себе такое близкое и знакомое понятие – вода? Ведь еще в ХХ веке человечество считало воду простым химическим элементом и даже не подозревало о ее сложном составе.

         В ХIХ веке была открыта химическая формула этого соединения Н2О, которая, как тогда казалось, дает полную информацию о воде, но в 1932 году открылся новый сенсационный факт – помимо обыкновенной воды, существует еще и понятие «тяжелая» вода, а на сегодняшний день уже известно до 135 изотопных разновидностей воды. Состав отдельно взятой капли воды, при условии полного ее очищения от примесей минеральных и органических веществ, всегда уникален, а ее свойства меняются в зависимости от физической природы составляющих ее атомов, способа формирования молекулы, и от объединения этих молекул в химическое соединение.
        Одним из самых замечательных и в то же время затрудняющим изучение воды свойством, является способность воды выступать в качестве универсального растворителя. Любое вещество, будь оно в твердом, жидком или газообразном состоянии, обязательно в какой-то степени растворяется в воде, поэтому вода всегда является раствором, имеющим очень сложный химический состав. И даже когда химический состав воды, взятой в различных местах, полностью идентичен, оказывается, что вода оказывает совершенно различное влияние на организм, так как условия формирования воды также определяют ее свойства.
Следует отметить, что в природе не существует абсолютно чистой воды, а наиболее близкой к этому понятию является дождевая вода, хотя даже она в своем составе имеет некоторое количество примесей, которые попадают в нее из воздуха. А наиболее характерным растворителем является морская вода, так как она может растворить практически любое вещество, а ее состав может включать до 70 элементов периодической системы Менделеева, начиная с хлора, магния, натрия, серы, кальция и калия, брома, углерода, стронция и бора, которые содержатся в морской воде в больших количествах, и заканчивая редчайшими радиоактивными элементами в очень небольших долях.

       В зависимости от содержания в воде различных примесей ее можно разделить на несколько классов: пресную воду, соленую и рассолы. От этого зависит и цвет воды. На первый взгляд, любая вода – прозрачная бесцветная жидкость, не имеющая ни вкуса, ни запаха, однако глубокие воды моря или океана выглядят голубыми, а вода горных рек кажется зеленой, именно присутствие различных примесей в воде придает ей различный цвет.
Казалось бы, при современном оборудовании и технологиях на сегодняшний день мы знаем о воде все, но открываются новые и новые факты, которые показывают, что вода обладает нераскрытым потенциалом, который еще только предстоит узнать человечеству.

       Оказывается, что вода не только с древнейших времен служит для удовлетворения бытовых и промышленных нужд человека, но и защищает Землю летом от перегревания, а зимой, отдавая ей свое тепло, от перемерзания. Избыток углекислого газа, вырабатываемый в процессе жизнедеятельности человека, мог бы привести к катастрофическим последствиям, если бы не был поглощен водами мирового океана.
       Вода обладает специфическими свойствами, которые не присущи не одному химическому соединению, так, к примеру, при переходе воды из жидкого состояния в твердое, она не увеличивает свою плотность, а увеличивает объем. Это связано с молекулярным строением льда: при замерзании молекулы располагаются на значительном расстоянии друг от друга, образуя рыхлую структуру льда, тем самым, увеличивая объем, но сохраняя массу, таким образом, вода в твердом состоянии (лед), легче, чем в жидком. Не обладай вода этим свойством, возникновение жизни на Земле не было бы возможно, так как возникший на поверхности водоема лед сразу же тонул и реки, моря и даже океаны промерзли бы до самого дна.

        Итак, одним из факторов, определяющих свойства воды, является ее молекулярный состав. Молекула воды представляет собой равнобедренный треугольник в основании которого лежат атомы водорода, а вершиной является атом кислорода, валентный угол этого треугольника НОН составляет 104,31°, при этом атомы водорода настолько тесно прилегают к атому кислорода, что на первый взгляд, молекула имеет сферическую форму. Молекула воды имеет слабые водородные связи, что позволяет воде испаряться, то есть если поместить воду в открытый сосуд, то постепенно все молекулы воды переместятся в воздух. Если же сосуд закрыть, то вода будет испаряться до тех пор, пока не будет достигнуто некое равновесие, которое объясняется давлением, оказываемым молекулами водяного пара, скопившегося между крышкой сосуда и оставшейся водой. Испарение происходит даже в твердом состоянии воды, то есть с поверхности льда или снега. При этом вязкость воды напрямую зависит от ее температуры, чем выше температура, тем меньше вязкость, при достижении точки кипения воды вязкость уменьшается в 8 раз, нежели при ее точке замерзания. Воду практически невозможно сжать, а ее плотность максимальна при 4°С.

        Физические характеристики воды таковы, что она переходит из твердого в жидкое состояние и наоборот (тает и замерзает) при одной и той же температуре 0°С. Температура кипения воды - 100°С, хотя и тут вода проявляет интереснейшие свойства: это правило соблюдается только при нормальном давлении, которое составляет 760 мм рт. ст., при понижении давления уменьшается и температура кипения воды, так на высоте 2900 м над уровнем моря, где атмосферное давление составляет 525 мм рт. ст., точка кипения воды составляет 90°С.

        Земля на 75% покрыта водой, и природой постоянно поддерживается естественный круговорот воды: она испаряется с поверхности водоемов, а затем выпадает в виде осадков: дождя или снега, но даже при таком разумном решении, некоторые районы земного шара постоянно страдают от недостатка пресной воды. Именно поэтому стоит помнить, что вода – величайшее богатство, дарованное нам природой, и каждая ее капля – драгоценна, ведь жизнь человека невозможна без воды.

 

Ультрафиолетовое излучение для дезинфекции питьевой воды

Печать E-mail

Ультрафиолетовое излучение для дезинфекции питьевой воды


Предлагаемая вниманию читателя статья относится к практической области применения ультрафиолетового (УФ) излучения для дезинфекции питьевой воды.
Наиболее важным с нашей точки зрения является то, что минимальная рекомендуемая доза УФ-излучения, необходимая для инактивации патогенной микрофлоры, составляет 40 мДж/см2 при коэффициенте пропускания воды больше 85% на 1 см.
В настоящее время на вводящихся в эксплуатацию и проектируемых станциях обеззараживания воды в США, Канаде, Великобритании, Франции и т.д. доза УФ-излучения выбирается в интервале от 50 до 100 мДж/см2. Это значительно удорожает процесс водоподготовки и ограничивает возможности применения УФ-излучения ламп низкого давления из-за их малой интенсивности. В обычной практике эти лампы способны обеспечить до 20 мДж/см2, что по современным требованиям к стерилизации явно мало.
В целом мы считаем, что представленная статья правильно соориентирует специалистов по водоподготовке в выборе режимов применения дезинфекции и УФ-излучателей.

Общие сведения об ультрафиолетовом свете

УФ-свет расположен в электромагнитном спектре между видимым светом и рентгеновскими лучами. УФ-область занимает в электромагнитном спектре диапазон от 400 до 100 нм. Кроме того, этот диапазон подразделяется еще на четыре поддиапазона:

  • УФ-А (длинноволновый УФ) — 315-400 нм;
  • УФ-В (средневолновый УФ) — 280-315 нм;
  • УФ-С (коротковолновый УФ) — 200-280 нм;
  • вакуумный УФ — 100-200 нм.


Для водообработки применяется УФ с двумя длинами волн — 254 и 185 нм. Свет с длиной волны 254 нм (1 нм = 10-9 м = 10 A°), называемый также бактерицидным светом из-за его способности убивать микроорганизмы, применяется для дезинфекции и уничтожения озона. Он проникает через внешнюю стенку клетки микроорганизма в тело клетки и изменяет генетический материал дезоксирибонуклеиновой кислоты (ДНК).

Таким образом, микроорганизмы уничтожаются нехимическим способом.

Кроме того, УФ-свет может разрушать остаточный озон, присутствующий в потоке воды.

УФ-свет длиной 185 нм, используемый для уменьшения ТОС, разлагает органические молекулы. Излучение длиной 185 нм имеет большую энергию, чем излучение длиной 254 нм, и оно формирует из молекул воды свободные радикалы гидроксила (ОН).

Основные требования при работе с системами ультрафиолетового излучения
Метод дезинфекции с использованием УФ-излучения доказал свою эффективность при дезактивации переносимых водой болезнетворных микроорганизмов и вирусов без ухудшения вкуса и запаха воды и без внесения в воду нежелательных побочных продуктов. Такой метод дезинфекции завоевывает популярность в качестве альтернативы или дополнения к традиционным средствам дезинфекции, таким как хлор, из-за своей безопасности, экономичности и эффективности.

Метод УФ-дезинфекции не обеспечивает полной дезинфекции остаточных загрязняющих веществ, поэтому в больших системах распределения он должен сочетаться с применением дополнительных средств дезинфекции.

Принцип действия УФ-излучения
УФ-дезинфекция выполняется при облучении находящихся в воде микроорганизмов УФ-излучением определенной интенсивности в течение определенного периода времени. В результате такого облучения микроорганизмы «микробиологически» погибают, т. к. они теряют способность воспроизводства.

УФ-излучение, имеющее бактерицидную длину волны 260 нм или близкую длину волны, проникает сквозь стенку клетки переносимого водой микроорганизма и поглощается ДНК, называемой генетической цепочкой микроорганизма, в результате чего процесс воспроизводства микроорганизма прекращается.

Лишение микроорганизма способности воспроизводства обычно называется дезактивацией этого микроорганизма. УФ-свет с длиной волны 185 нм применяется для снижения концентрации полностью органического углерода (Total Organic Carbon — ТОС).

Общие вопросы по установке

При оценке возможности установки УФ-системы необходимо рассмотреть параметры воды и характеристики конкретного приложения. Важно выбрать параметры системы и произвести ее установку таким образом, чтобы при максимальном расходе воды обеспечивалась необходимая доза УФ-излучения.

В обычной УФ-системе обработки питьевой воды в конце рекомендуемого производителем срока службы УФ-лампы доза излучения составляет приблизительно 40 мДж/см2. Средний срок службы лампы лежит в пределах от 8 000 до 12 000 ч работы.

Каждая УФ-система сконструирована для обработки в конце срока службы лампы (EOLL) максимального расхода воды при определенном значении коэффициента пропускания. Коэффициент пропускания отражает способность УФ-излучения проходить через воду на расстояние 1 см. Для дезинфекции воды рекомендуется применять УФ-свет при значении коэффициента пропускания не ниже 85 %. Для определения истинного воздействия УФ-системы, кроме коэффициента пропускания, необходимо знание значения другого показателя — общего содержания в воде взвешенных твердых частиц (TSS).

Если взвешенные частицы не отфильтровываются, эффективность дезинфекции УФ-излучением снижается.
Взвешенныечастицы могут влиять на эффективность УФ-системы, затеняя микроорганизмы, в результате чего микроорганизмы могут не получить необходимой дозы облучения.

Как правило, для систем питьевой воды рекомендуемая максимальная концентрация TSS составляет 1 мг на 1 л воды. Однако даже при нормальной эксплуатации кварцевый стакан загрязняется слоем биологического или химического материала, интенсивность которого зависит от общего количества растворенных в воде твердых веществ (TDS). Этот слой уменьшает способность УФ-света проникать в микроорганизмы.

Косвенное влияние TDS на качество воды выражается в снижении эффективности лампы при увеличении загрязнения кварцевого стакана, защищающего от воды УФ-лампу.

Кроме этого, на выходные параметры системы влияет температура воды. При превышении температуры воды значения 27 °С воду следует охлаждать, а при снижении температуры ниже 4 °С необходимо подогревать воду или устанавливать дополнительные лампы для компенсации снижения эффективности системы.

УФ-оборудование
Основу обычного УФ-модуля составляет цилиндрическая камера, содержащая УФ-лампы, заключенные в кварцевые стаканы, поверх которых протекает вода. Оптимальная конфигурация ламп внутри камеры позволяет обеспечить облучение УФ-светом каждую часть цилиндра камеры. Лампы надежно крепятся ламповыми фиксаторами. Подключение воды, протекающей вдоль цилиндра, осуществляется при помощи впускного и выпускного соединений (фланцы стандарта ANSI или тройные зажимы).

В течение короткого периода времени протекания воды в цилиндре вещества, загрязняющие воду (бактерии, ТОС, озон, хлор или хлорамин), подвергаются воздействию УФ-излучения, испускаемого лампами. В результате эти вещества разрушаются и вода становится чище.

Питание ламп осуществляется от балластной схемы, являющейся существенной компонентой УФ-модуля. Эта схема увеличивает входное напряжение до уровня, при котором возникает электрическая дуга и зажигаются лампы. Балластная схема также продлевает срок службы ламп.

Интенсивность излучения ламп со временем падает, поэтому для большей эффективности модуля они должны заменяться каждые 8 000-9 000 ч.

Характеристики УФ-системы
Для облегчения эксплуатации УФ-системы может быть добавлено специальное оборудование для отслеживания, контроля и обслуживания базовой системы:

  • ручной или автоматический механизм стеклоочистителя, служащий для очистки загрязнений на кварцевом стакане;
  • УФ-монитор, измеряющий интенсивность УФ-ламп. Такие мониторы могут измерять выходную интенсивность ламп в абсолютных единицах мДж/см2, или как относительную интенсивность в процентных значениях;
  • автоматический соленоидный клапан, отключающий УФ-систему в случае снижения дозы облучения
  • из-за разбитой лампы или изменения качества воды.


Общие предостережения и рекомендации

  • Не следует касаться пальцами устройства. Во время установки УФ-системы нельзя касаться пальцами кварцевого стакана или УФ-лампы. Жир на пальцах затрудняет передачу УФсвета от лампы. Он может также создать горячее пятно на лампе, которое увеличивает соляризацию лампы и резко уменьшает срок ее службы.
  • Необходимо защищать глаза. Для предотвращения попадания в глаза опасного УФ-излучения необходимо надевать защитные очки.
  • Необходимо промывать систему.После установки УФ-системы следует промыть систему распределения воды химическими дезинфецирующими веществами, например хлорной известью, для удаления всех бактерий или загрязняющих веществ, которые имеются в линиях распределения.
  • Надлежащий уход. После установки УФ-системы следует регулярно производить ее надлежащее техническое обслуживание. Кварцевые стаканы, УФ-лампы и механизм очистителя следует заменять согласно рекомендациям производителя.
  • Для обычной УФ-системы низкого давления со стандартной выходной мощностью, используемой для приложений POU и POE, число циклов включений и выключений в течение дня не должно превышать четырех. Более частое включение и выключение может вызвать усиленный износ нитей накала ламп и, соответственно, сокращение срока службы.
  • Рекомендуется применять УФ-лампы с предварительным нагревом или устанавливать механизм временной задержки. Обе возможности позволяют достичь максимальной температуры, при которой обеспечивается максимальная эффективность системы перед началом водообработки системой.


Общие рекомендации при неполадках
Даже при выполнении всех требований по техническому обслуживанию могут возникнуть некоторые проблемы. В этих случаях перечень контрольных вопросов может помочь быстро найти нужное решение.

  • Если УФ-монитор обнаруживает снижение дозы облучения, рекомендуется вначале определить, заменялась(лись) ли лампа(ы) и чистился(лись) ли стакан(ы) с момента установки системы.
  • Если выдерживался необходимый график технического обслуживания, производилась ли повторная калибровка УФ-монитора после установки новой лампы?
  • Если УФ-монитор был повторно откалиброван, очищался ли также датчик УФ-монитора от возможных загрязнений или биологических наслоений?
  • Если линза датчика УФ-монитора очищалась во время текущего технического обслуживания лампы и кварцевого стакана, не изменились ли качество воды, значение коэффициента пропускания или температура воды?


Для УФ-систем, требующих перерыва в работе не более часа, перед повторным включением можно не производить каких-либо дополнительных действий. Если для системы требуется более длительный период отключения или если она находится в резервном состоянии в течение недель или месяцев, рекомендуется перед повторным запуском обработать хлором линии распределения согласно требованиям по установке.

Если наблюдается продолжительное бактериальное загрязнение от недавно запущенной системы, следует выяснить, промывалась ли система перед запуском.

Удаление остатков хлора и хлорамина при помощи ультрафиолетового излучения
УФ-свет лежит в основе мощной технологии, которая уже в течение многих десятилетий успешно применяется во многих отраслях промышленности, таких как фармацевтика, полупроводниковая промышленность, производство электроэнергии, пищевая и косметическая промышленности, аквакультура, здравоохранение.

Наряду с тем, что мощная энергия УФ-излучения традиционно используется в таких приложениях, как дезинфекция, уничтожение озона, уменьшение ТОС, в последнее время было разработано приложение по использованию УФ-технологии для уничтожения остатков хлора и/или хлорамина.

Наука химических присадок
Для дезинфекции воды в основном используется хлор в газообразном состоянии. Он соединяется с молекулами воды и образует хлорноватистую кислоту (HOCl), ионы Н+ и ионы хлора. HOCl распадается на Н+ и ионы OCl (гипохлорида).

Хлорноватистая кислота вместе с ионами гипохлорида называется свободным хлором. При реакции хлора с аммиаком, присутствующим в воде, образуется хлорамин, который так же, как и хлор, имеет биоцидные свойства. Имеется три разновидности хлорамина: монохлорамин, дихлорамин и трихлорамин. Для дезинфекции воды в основном применяется монохлорамин. Концентрация различных разновидностей хлорамина зависит в основном от уровня рН воды.

Наряду с тем, что хлор или хлорамин позволяют очень хорошо контролировать бактериальный уровень, эти агенты привносят и некоторые проблемы. Внесение хлора, будучи разновидностью химической обработки, вызывает изменения химического состава, вкуса и запаха воды, что крайне нежелательно для большинства отраслей промышленности. Кроме того, серьезным недостатком применения хлора является возможность появления канцерогенных побочных продуктов или трехгалогензамещенного метана (ТНМ), образующихся, когда остаточный хлор реагирует с органическими смесями, присутствующими в воде.

Удаление хлора
В обычных системах водоснабжения остаточный хлор обычно удаляется слоем активированного угля или внесением химических веществ, например метабисульфита натрия. Слой активированного угля адсорбирует остаточный хлор и преобразует его в молекулы соляной кислоты и углекислого газа. В случае хлорамина побочными продуктами реакции адсорбции активированным углем являются аммиак и соляная кислота. Механизм действия метабисульфита натрия более сложен. Вначале из метабисульфита натрия образуются ионы сульфита. Затем эти ионы разлагают хлор и хлорамин на сульфат, аммиак и соляную кислоту. Эти методы имеют определенные внутренние недостатки. Использование метабисульфита натрия означает применение одного химиката для удаления другого, поэтому слой активированного угля может служить «питомником» для бактерий. Кроме того, дехлорирование слоем активированного угля не обеспечивает полного удаления хлора.

Так как слой активированного угля благодаря адсорбции может одновременно снизить уровень органических примесей, присутствующих в потоке воды, эти органические примеси могут служить в качестве питательного состава для размножения бактерий, тем самым еще более усугубляя проблему.

Наконец, метабисульфит натрия нейтрализует хлор, но он может разлагаться и образовывать сульфат натрия, способствующих развитию уничтожающих сульфат бактерий (SRB).

Применение УФ-излучения
Исследования показали, что остатки свободного хлора с концентрацией более 1,0 на миллион и остатки хлорамина с концентрацией более 2,0 на миллион могут успешно уничтожаться УФ-излучением.

Обычными побочными продуктами реакции разрушения хлора (в присутствии молекул воды и при воздействии УФ-света) являются соляная кислота и разновидности гидроксила (последние помогают в разложении некоторых органических смесей в воде).

Обычными побочными продуктами реакции разрушения хлорамина (в присутствии молекул воды и при воздействии УФ-света) являются соляная кислота, нашатырь и различные разновидности нитратов.

Реакции разрушения свободного хлора и хлорамина удовлетворяют условиям кинетики первого порядка. Минимально необходимая доза облучения УФ-светом зависит от следующих переменных:

  • качество воды (рН, TSS, TDS, мутность, наличие солей металлов (железа, марганца), ТОС /цвет, жесткость и т.д.);
  • расход;
  • концентрация остаточного свободного хлора/хлорамина.


Заключение
УФ-системы обеспечивают безопасный, эффективный и недорогой метод дезинфекции. Простейший базовый
вариант системы, оснащенный необходимыми системами измерения и управления, предоставляет пользователю
возможности для удобной эксплуатации и несложного технического обслуживания.

Специалисты по водообработке должны иметь общие представления о дезинфекции при помощи УФ-излучения, а также о способах эксплуатации и технического обслуживания УФ-систем. В свою очередь, дилеры должны обучать своих клиентов правильному обращению и использованию систем для обеспечения чистой питьевой воды.

по материалам www.atlas-w.com

 

Серебрение воды как метод обеззараживания

Печать E-mail

С давних времен существует убеждение в том, что, опуская серебряные предметы в воду, мы насыщаем ее ионами серебра, тем самым обеззараживаем ее, уничтожая микроорганизмы. Так ли это?
Современные исследования не дают однозначного ответа на этот вопрос.


Вот несколько интересных современных фактов об этом металле. 


Во-первых, серебро – это тяжелый металл. В утвержденных Министерством здравоохранения Украины ДСАНІПН “Вода питна. Гігієнічні вимоги до якості води централізованого господарчо-питного водопостачання” регистрационный № 136/1940 от 15.04.97 г., например, серебро отнесено к “высокотоксичным веществам”, класс опасности 2; т.е. серебро стоит в одном ряду со свинцом, мышьяком, цианидами и др. 

Во-вторых, в силу того, что серебро медленно выводится из организма и при длительном поступлении может накапливаться в нем (как и большинство тяжелых металлов), возможно развитие такой патологии, как аргироз, основным признаком которого является приобретение кожей серого (“аспидного”) оттенка; непосредственной угрозы для жизни аргироз не представляет.


В-третьих, ни в одном из серьезных медицинских источников серебро не отнесено к жизненно важным химическим элементам; точно известно одно: среднесуточное поступление серебра с пищей и водой (по данным Всемирной организации здравоохранения - ВОЗ) около 7 микрограмм в сутки. При этом физиологическая роль серебра для человека изучена недостаточно.


В-четвертых, по данным ВОЗ, при концентрациях до 100 мкг/л ионы серебра оказывают бактериостатическое действие, т.е. не позволяют бактериям размножаться, но если концентрация ионов уменьшается ниже 50 мкг/л, размножение микробов возобновляется. И только концентрация ионов серебра свыше 150 мкг/л вызывает бактерицидный эффект (уничтожение бактерий).


В-пятых, доказано, что спорообразующие бактерии (например, возбудитель сибирской язвы) ионами серебра не уничтожаются.


В-шестых, не до конца выяснен вопрос воздействия ионов серебра на вирусы и простейшие микроорганизмы. В связи с этим ВОЗ предупреждает: “Хорошо известно такое явление, как рост бактерий внутри фильтров на основе активированного угля… Некоторые производители таких фильтров пытались преодолеть эту проблему, добавляя в качестве бактериостатического агента серебро. Однако все имеющиеся на данную тему публикации убедительно показывают, что такая практика имеет ограниченный эффект. Считается, что присутствующее в таких фильтрах серебро селективно допускает рост устойчивых к нему бактерий. По этой причине использование таких устройств допускается исключительно для питьевой воды, о которой известно, что она безопасна в микробиологическом отношении”. 


В-седьмых, в наше время серебрение оправдано только для питьевой воды длительного хранения (например, на морских судах), хотя изначально такая вода должна отвечать определенным требованиям: иметь малое количество бактерий, исключить дальнейшее попадание бактерий, храниться в темноте, т.к. под действием света выпадает осадок.


В-восьмых, церковь отрицает “освятительную” роль серебра в освящении воды церковнослужителями, утверждая, что, независимо от материала креста (серебро, дерево, железо), вода освящается от сошествия на нее Святого Духа.


В-девятых, никем не отмечено никакого улучшения химических и физиологических свойств серебряной воды.


В-десятых, сегодня серебро успешно используется в качестве обеззараживающего средства только в комбинации с другими уничтожающими микроорганизмы дезинфектантами. Например, ионизация воды бассейна ионами серебра и меди в соотношении 1:10 дает хороший обеззараживающий эффект и одновременно позволяет снизить степень хлорирования (но не отказаться от него!) на 80%. 


Таким образом, все вышеперечисленное позволяет считать серебро слабым и недостаточно изученным обеззараживающим агентом.

 
Еще статьи...

полезное

Новости

27.10.2013
Акция- Архыз 330 рублей
Родниквода проводит акцию, при заказе 5 бутылок воды Архыз в 19-ти литровых бутылях (ПЭТ), цена за бутыль-330 руб....
25.10.2013
Кулер Aqua Work бесплатно
Интернет-магазин rodnikvoda.ru запустила уникальную акцию: при заказе любой воды не менее 15 бутылок в месяц, вы може...
11.10.2013
Итальянские кофемашины Didiesse
Уважаемые наши партнеры! Компания Родниквода заключила эксклюзивный договор с Итальянской копманией Didiese по...